5G Technology World

  • 5G Technology and Engineering
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • EE Learning Center
  • 5G Videos
  • Handbooks
    • 2022
    • 2021
  • Design Guides
    • WiFi & the IOT Design Guide
    • Microcontrollers Design Guide
    • State of the Art Inductors Design Guide

5G Transceiver Developed for Fast, Reliable Communications

By Spencer Chin | February 18, 2019

With 5G gearing up for future adoption, wireless and microwave device makers are busy developing compatible hardware. Researchers at Tokyo Institute of Technology (Tokyo Tech) have designed a 28 GHz transceiver that integrates beamforming with dual-polarized multiple-input and multiple-output MIMO technology. The 3 by 4 mm transceiver could help improve performances of 5G and Internet of Things (IoT) devices.

The device achieves high performance by being able to combine the efficient signal processing method of beamforming with dual-polarized MIMO capabilities, meaning that its array of antennas can respond to both horizontal and vertical radio waves at the same time.

Preliminary testing showed that the maximum data rate achieved was 15 gigabits per second (Gb/s) in the 64-QAM format. This data rate is 25 percent higher than that achieved by previous comparable models.

The research team, led by Kenichi Okada, was also able to pack the high performance into a device measuring just 3 x 4 mm, which is reportedly  half the size achieved to date. The smaller the chip, the better for 5G, owing to the anticipated demand for high-performance, area-efficient transceivers for use in tiny and portable sensors and devices.

“Compared with the conventional switch-based bi-directional approach, our bi-directional amplifier completely shares the inter-stage matching networks between the transceiver and the receiver. Thus, the required on-chip area is further minimized,” Okada explains.

Japan is currently stepping up efforts to prepare for 5G ahead of the Tokyo 2020 Olympic and Paralympic Games. There are big hopes for 5G services to enable higher data throughput for applications such as live-streaming high-definition (HD) video and for potentially trillions of new IoT devices that can share data around the clock, as well as to increase the speed and responsiveness of communication networks overall.

The research was partially supported by SCOPE, an initiative led by Japan’s Ministry of Internal Affairs and Communications that focuses on promoting innovations in information and communication technologies.

Related Articles Read More >

IoT antenna shrinks footprint by 50%
ETS-Lindgren EMQuest wireless measurement software
OTA wireless test system supports Wi-Fi 6 and 6E
mmWave IC pair shrinks cost and size, boosts performance
IoT antennas cover all Wi-Fi frequency bands

Special Issue: 5G Handbook

Need 5G Technology World news in a minute?

We Deliver!
5G Technology World Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup

EE World Online Twitter

Tweets by @RandDWorld

EE TRAINING CENTER CLASSROOMS

EE Classrooms
5G Technology World
  • Enews Signup
  • Contact Us
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search 5G Technology World

  • 5G Technology and Engineering
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • EE Learning Center
  • 5G Videos
  • Handbooks
    • 2022
    • 2021
  • Design Guides
    • WiFi & the IOT Design Guide
    • Microcontrollers Design Guide
    • State of the Art Inductors Design Guide