5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

A Circuit Platform Made of Strongly Interacting Microwave Photons

By dmiyares | February 12, 2019

A team of researchers at the University of Chicago has developed a circuit platform for the exploration of quantum matter made of strongly interacting microwave photons. In their paper published in the journal Nature, the group outlines their platform and how it might be used.

As part of the effort to create a useful quantum computer, scientists have been investigating superconducting circuits, which are controllable, have long coherence times and have strong interactions—characteristics required when studying quantum materials with microwave photons. The researchers note also that photon losses in such circuits (dissipation) can hold back the formation of many-body phases. To address this issue, they have developed a versatile circuit platform for handling many-body phases via reservoir engineering, resulting in a Mott insulator to reduce losses.

The scheme involves imagining a tiny location called a transmon and considering how it could house a single photon. In such a scenario, when the transmon is empty, it is a simple matter to add a photon by pushing with a microwave generated electric field, but doing so could also remove any photon that is already housed. Instead, the researchers suggest adding a reservoir and pushing photons into the transmon as pairs—any extra photon would move naturally into the reservoir. In the case that there is already a photon in the transmon, it would remain in place rather than move to the reservoir. Next, the researchers imagined extending the scheme by adding more transmons to form a chain. An added photon would make its way down the chain, and if no locations were empty, it would wind up in the reservoir. Eventually, the system reaches a point at which all the locations in the chain are filled with single photons—this would represent a Mott insulator state.

The researchers note that such a scheme would be flexible and thus could be applied to systems with different shapes, sizes and couplings. They note also that the scheme could be used to prepare any gapped phase of matter. They point out that for such a scheme to be practical, two new advances are still needed: a way to extend it to a larger system and a means of improving the quality of preparation.


Filed Under: RF

 

Next Article

← Previous Article
Next Article →

Related Articles Read More >

Butler Matrix
Butler Matrix drives Wi-Fi and other phased-array antennas
Long-wire dipole antennas: still viable after more than a century
RemCom Wireless InSite 4.0
Software simulates RF conditions from the Earth to the Moon
FAQ on the Butler matrix for beamforming: part 2

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World