5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Collision Avoidance Systems: Microwave Components Saving Lives

By dmiyares | December 1, 2015

Imagine that you’re slowly making your way down a dark highway as your wipers struggle to keep up with the downpour that is assaulting your windshield. As you squint to make out the yellow lines painted on the road, a car traveling next to you suddenly changes into your lane and cuts you off. Before you have time to react and hit the brakes, your car automatically slows down, avoiding a serious accident.

This is a common scenario with newer cars fitted with pre-collision avoidance systems. These active safety systems use Doppler radar to detect objects that come into a vehicle’s path, triggering the brakes before impact. Typically, a radar detector is placed towards the front of a vehicle, such as within the grill. This detector sends out high frequency waves and then interprets the signals that bounce back, which would indicate object location, speed, and the direction it is traveling.

In order for the system to process all of this information and take action in a matter of milliseconds, a delay needs to be introduced. Linear Surface Acoustic Wave (SAW) delay lines are typically used in collision avoidance systems because they are smaller and less expensive than other delay line options. SAW delay lines used in collision avoidance systems operate across public frequency bands, and system designers would typically down mix the radar frequencies in order to process them through one channel with a constant delay.

This gives the system all of the information it needs to determine if a collision is imminent, and allows it to respond by automatically deploying the brakes, tensing seatbelts, or taking other safety precautions rapidly enough to avoid impact.  

Related Articles Read More >

FAQ on the Butler matrix for beamforming: part 2
10 GHz RF cables feature double shields
Test wireless signal to 110 GHz with this 1-mm cable
Wireless modules enhance IoT devices through theft-prevention tracking

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World