5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Cool Method for Making Waveguides

By The Agency for Science, Technology and Research (A*STAR) | April 28, 2016

Silicon-based films that are useful for waveguides have been made at temperatures low enough to be compatible with standard manufacturing processes.

A low-temperature method to produce films based on silicon and nitrogen, which can be used to channel light in devices, has been developed by researchers at Agency for Science, Technology and Research (A*STAR), Singapore.

Silicon is very a familiar material because of its prevalence in electronic devices, and is increasingly being used in optical and electro-optical devices as well. In particular, it is used to guide light along narrow stripes in components known as waveguides. While silicon has many advantages, it suffers from high losses when used in waveguides as a result of nonlinear absorption at the wavelength used for telecommunications (1,550 nanometers).

One way to reduce these losses is to incorporate nitrogen atoms to produce so-called silicon-rich nitride ― a material whose nitrogen content is intermediate between pure silicon and silicon nitride. But, the usual techniques for making silicon-rich nitride require high temperatures, which renders the process incompatible with the standard technology used for constructing integrated circuits.

Now, Doris Ng at the A*STAR Data Storage Institute and co-workers have discovered a way to make silicon-rich nitride films (see image) at temperatures as low as 250 degrees Celsius, which is much lower than the temperatures usually used to produce the material. They used a plasma ― a gas that has been energized to the point that electrons have been stripped from its molecules ― to deposit a tailored mixture of silicon and nitrogen atoms onto a substrate.

By changing the process parameters, the researchers were able to vary the refractive index of the films. Under certain conditions, they were able to achieve a high refractive index of 3.08 at the telecommunication wavelength. This refractive index is high enough to make it suitable for use in waveguides, but not high enough to cause detrimental nonlinear effects.

The team demonstrated the potential of their films by making waveguides from them. “The waveguide we made using the silicon-rich nitride with the highest refractive index exhibits very good nonlinear performance,” says Doris.

The study heralds the beginning of a fruitful partnership. “This work is a collaborative project between A*STAR Data Storage Institute and Singapore University of Technology and Design,” notes Ng. “I work on material development, while my collaborator, Dawn Tan, specializes in nonlinear optics. I think it’s the perfect team for our project. We are still at the beginning but have been very encouraged by the results obtained so far.”

The team plans to further optimize the material to reduce losses and hence enhance device performance.

Related Articles Read More >

RemCom Wireless InSite 4.0
Software simulates RF conditions from the Earth to the Moon
FAQ on the Butler matrix for beamforming: part 2
10 GHz RF cables feature double shields
Test wireless signal to 110 GHz with this 1-mm cable

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World