5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Fine-Tuned Molecular Orientation is Key to More Efficient Solar Cells

By RIKEN | May 26, 2015

Polymer solar cells are a hot area of research due to both their strong future potential and the significant challenges they pose. It is believed that thanks to lower production costs, they could become a viable alternative to conventional solar cells with silicon substrates when they achieve a power conversion efficiency–a measure that indicates how much electricity they can generate from a given amount of sunlight–of between 10 and 15 percent. Now, using carefully designed materials and an “inverted” architecture, a team of scientists has achieved efficiency of 10 percent, bringing these cells close to the threshold of commercial viability.

Polymer-based solar cells offer a number of potential advantages. They are made of polymers that are inexpensive and flexible, and can be deposited on glass or plastic substrates, allowing the construction of large-scale structures. They are cheaper to manufacture, and more environmentally-friendly, than their silicon counterparts. Unfortunately, they have lower power efficiency due to their structure and also tend to degrade more quickly.

In the research published in Nature Photonics, a collaboration including Itaru Osaka and Kazuo Takimiya of the RIKEN Center for Emergent Matter Science managed to create a type of polymer solar cell called a bulk-heterojunction solar cell–where the electron donor and acceptor layers are mixed together–with a power conversion efficiency of 10%, close to what will allow these materials to be commercially viable.

According to Osaka, “While private firms have been able to develop cells with similar efficiency, they have done so using proprietary technology, so that it was not possible to know why things were working the way they were. We began experimenting with a substance called PNTz4T, which we had previously developed, and were able initially to achieve a power conversion efficiency of about 8%, with a fairly thick active layer of about 300 nanometers. Surprisingly, though, we found that when we used an inverted architecture, where the light enters through a transparent negative electrode, in our case made of zinc oxide, we found that the cell with the inverted architecture had better efficiency, which is abnormal for cells of the type we built. We believe that it is due to the alignment of molecules inside the mixed layers.”

The researchers analyzed the composition of the materials using the SPring-8 synchrotron facility in Harima, and found indeed that in the inverted model, the orientation of the molecules within the active layer was very commonly “face-on,” an orientation well suited to the transport of electron holes through the material. Takamiya says, “We surmised that this was the secret to the success in the experiment. It turns out that by trying something that might seem unusual, we got a surprising result, and through this were able to understand something about what makes cells more or less efficient.”

According to Professor Hideyuki Murata of the Japan Advanced Institute of Science and Technology, who participated in the research, “This is an exciting result because we now have an understanding of how we can move forward to create polymer solar cells with greater efficiency. We hope that researchers around the world will be able to make use of these results to create commercially viable cells.”


Filed Under: RF

 

Next Article

← Previous Article
Next Article →

Related Articles Read More >

Open RAN test service adds colocation capabilities
Switch operates DC to 20 GHz with 128 configurable connection states for asymmetric SerDes testing
Butler Matrix
Butler Matrix drives Wi-Fi and other phased-array antennas
Long-wire dipole antennas: still viable after more than a century

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World