5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Here’s How Origami Could Be Used to Shape the Future of Engineering

By Laura Castañón, Northeastern University | January 14, 2019

Folding a paper crane is a slow, methodical process. So is unfolding an array of solar panels in space.

But for other transformations, speed is more important. In a paper published in Physical Review Letters in December, researchers at Northeastern showed that it’s possible to change the shape of an origami-inspired structure in less than one second.

“Not only can we move between different configurations very quickly—less than a second—but it’s very reliable,” said Samuel Felton, an assistant professor of mechanical and industrial engineering.

The structure, designed by Felton and Chang Liu, a graduate student in engineering, looks deceptively simple. It’s made of twelve pieces of plastic fitted together in a y-shape with hinges between them. But depending on the direction each hinge flexes, it can make 17 different shapes.

The researchers found that they could essentially shake the structure into different shapes using a single motor to rapidly open and close the hinge at the bottom of the y-shape. The resulting configuration is determined by how far the hinge opens before returning to its original position.

Typically, origami-inspired engineering requires precise control of each hinge to move perfectly stiff panels into place in the right order. But Felton and Liu are using panels that are slightly flexible. With a bit of momentum, each hinge can pop back and forth between its two positions, like the slap bracelets that became a popular fad in the 1990s.

“It’s fast and repeatable, which is rare for origami transformation,” Felton said.

The researchers said that their structure could be used to inform new origami-based designs in several areas of engineering. Felton is particularly interested in building arrays of antennae that can be rapidly reconfigured to more effectively scan large areas.

Antenna arrays are made up of multiple antennas that work together to detect signals and pinpoint the direction they’re coming from. But when stationary, arrays are best at picking up signals from a particular direction. To gather more information, they have to move.

“This same origami-inspired pattern, if we make it conductive, acts like an antenna,” Felton said. “We could connect multiple antennas to the same mechanism. Then, instead of just actuating one of them, we can actuate a whole array of them. You could change them all just a little bit.”

It might be faster to reorient an array of antennas by shaking them into a new shape than by using other currently available methods, Felton said. And because many antennas could be adjusted with a single motor, the arrays could be miniaturized for use on drones and other technology where space and weight become a factor.

Felton and Liu are also looking for opportunities to apply their work to robotics.

“With origami, theoretically you can fold anything,” Felton said.

Related Articles Read More >

FAQ on the Butler matrix for beamforming: part 2
10 GHz RF cables feature double shields
Test wireless signal to 110 GHz with this 1-mm cable
Wireless modules enhance IoT devices through theft-prevention tracking

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World