5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

How AI can Improve Human Decision Making in IoT Applications

By dmiyares | September 13, 2018

CA Technologies announced its participation in scientific research to discover how Internet of Things (IoT) applications can use a type of AI known as ‘deep learning’ to imitate human decisions. The research will also explore how to prevent that AI-based decisions are not producing biased results.

This three-year research project is named ALOHA (adaptive and secure deep learning on heterogeneous architectures). It is funded by the European Union as part of the Horizon 2020 research and innovation programme, and coordinated by the University of Cagliari in Italy.

“The future of all technologies will include AI and deep learning in some way,” said Otto Berkes, chief technology officer, CA Technologies. “The expansion of complex, multi-layered IoT systems bring both security and software development challenges that AI and autonomous computing are uniquely positioned to address,” he added.

“ALOHA aims to better understand how applications running on IoT devices with growing computational power can learn from experience and react autonomously to what happens in a surrounding environment,” says Victor Muntés, vice president of Strategic Research, CA Technologies. “We will bring our security expertise to avoid data poisoning risks that could lead to bias in AI-based decisions, while our agile expertise will help to efficiently embed the use of deep learning in the software development process.”

Until now, deep learning AI algorithmic processing has largely been limited to expensive, high performance servers. ALOHA will study the use of these deep learning algorithms on small, low-power consumption devices such as video cameras, sensors and mobile devices. This will enable them to learn, recognise and classify images, videos, sounds and sequences quickly and with high precision.

The ability of small devices to make smart decisions thanks to deep learning applications will be extremely useful in situations where human expertise is not available. For example, an IoT application could automatically provide a diagnosis for a medical CT scan image in a remote location.

The outcome of ALOHA to prevent data poisoning could be applied to help solve AI bias issues in IoT applications and also in other application contexts, to avoid situations as chatbot communicating a racist remark or a translation application advocating sexism.

CA Technologies supports the development and security of deep learning applications

CA Technologies will be responsible for the development and security of the underlying deep learning platform, focusing its research on the following areas:

  • Security: CA research will include the development of new tools that can analyse data and detect bias. These tools will be extended to detect data positioning risks and suggest mitigation actions.
  • Agile: CA will explore how agile methodologies can be applied to the deep learning arena to align strategy and execution, track and manage delivery in a predictable cadence, and leverage key data to measure performance.

CA Strategic Research scientists explore new technologies, applications and platforms like IoT, robotics, Artificial Intelligence (AI) and more through diverse R&D efforts in partnership with leading research communities in academia, government and beyond. 


Filed Under: IoT

 

Next Article

← Previous Article
Next Article →

Related Articles Read More >

Clock generator integrates a resonator and temperature sensor
TXCO operates at 1.2 V
Click board and module add LTE to IoT devices
5G development in 2025: halftime or still first quarter?

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World