5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Laminates Capable Of 5G, Other Millimeter Wave Application Support

By Rogers Corporation | October 12, 2017

Rogers Corporation has introduced CLTE-MW™ laminates. These laminates are ceramic filled, woven glass reinforced PTFE composites. CLTE-MW laminates were developed to provide a cost effective, high performance material for the circuit designer. This unique laminate system is well suited for applications that have limitations in thickness due to either physical or electrical constraints.

The seven available thickness options from 3 mils to 10 mils ensure that ideal signal to ground spacing exists for today’s 5G and other millimeter wave designs. In addition, a variety of copper foil options are available including rolled, reverse treated ED, and standard ED. Resistive foil and metal plate options are also available upon request.

CLTE-MW laminates are reinforced with spread glass, which along with a high filler loading help minimize the high frequency glass weave effects on electromagnetic wave propagation. Their woven glass reinforcement also provides excellent dimensional stability. Other key features of the laminate include low z-axis CTE (30ppm/°C) for excellent plated through hole reliability, a low loss tangent of 0.0015 at 10 GHz to enable low loss designs, and low moisture absorption of 0.03% to ensure stable performance in a range of operating environments.

Thermal conductivity of 0.42 W/(m.K) enables heat dissipation in aggressive designs along with a high dielectric strength of 630 V/mil to ensure good z-axis insulation between conductor layers. The UL94 V-0 flammability rating enables the use of CLTE-MW laminates in commercial applications.

CLTE-MW laminates are well suited for a range of applications including Amplifiers, Antennas, Baluns, Couplers and Filters. Applicable markets range from Commercial and Consumer to Defense and Aerospace.


Filed Under: RF

 

Next Article

← Previous Article
Next Article →

Related Articles Read More >

Long-wire dipole antennas: still viable after more than a century
RemCom Wireless InSite 4.0
Software simulates RF conditions from the Earth to the Moon
FAQ on the Butler matrix for beamforming: part 2
10 GHz RF cables feature double shields

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World