5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Less Wear, Longer Life for Memory Storage Device

By Staff Author | September 12, 2012

Probe storage devices read and write data by making nanoscale marks on a surface through physical contact. The technology may one day extend the data density limits of conventional magnetic and optical storage, but current probes have limited lifespans due to mechanical wear.

A research team, led by Intel Corp., has now developed a long-lasting ultrahigh-density probe storage device by coating the tips of the probes with a thin metal film. The team’s device features an array of 5,000 ultrasharp probes that is integrated with on-chip electronic circuits. The probes write tiny bits of memory as small as a few nanometers by sending short electrical pulses to a ferroelectric film, a material that can be given a permanent electric polarization by applying an electric field.

High-speed data access requires that the probes slide quickly and frequently across the film. To prevent tip wear, which can seriously degrade the write-read resolution of the device, the researchers deposited a thin metal film of hafnium diboride (HfB2) on the probe tips.

As the researchers describe in the American Institute of Physics’ journal Applied Physics Letters, the metal film reduces wear and enables the probe tips to retain their write-read resolution at high speeds for distances exceeding 8 kilometers – greatly increasing the device’s lifetime. The data densities of the device exceed 1 Terabit per square inch.

The work is an important step toward the commercialization of a probe-based storage technology with capacities that exceed those of hard disk and solid-state drives.

American Institute of Physics

September 12, 2012


Filed Under: RF

 

Next Article

← Previous Article
Next Article →

Related Articles Read More >

RemCom Wireless InSite 4.0
Software simulates RF conditions from the Earth to the Moon
FAQ on the Butler matrix for beamforming: part 2
10 GHz RF cables feature double shields
Test wireless signal to 110 GHz with this 1-mm cable

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World