5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Metamaterial-Enabled Antennas Help Improve Satellite Communications Systems

By Rebekka Coakley, Pennsylvania State University | January 15, 2016

Smaller, lighter weight, better performing and more multifunctional miniature antennas with increased performance may be possible using smart materials, according to Penn State engineers. One particularly promising application of this technology is for satellite communications systems.

These antennas made of metamaterials—manufactured materials that possess exotic properties not usually found in nature—can be integrated with modern digital electronic radios that are software controlled, facilitating a transformative communications system with remarkable frequency and polarization agility.

The engineers, who reported their research in a recent issue of Advanced Electronic Materials, developed a small, functionalized, metamaterial antenna operated by simultaneously tuning components of the metamaterial and the antenna together as a system, said Clinton Scarborough, who worked on this research for his dissertation.

Metamaterials derive their unusual properties from manufactured structures rather than atomic or molecular interactions alone.

“Metamaterial-based antennas often suffer a stigma of impractically narrow operating bandwidths, just like small antennas,” said Scarborough. “Radios need to be able to operate over a significant bandwidth, but typically only on a single channel at a time. The laws of physics dictate that a small metamaterial antenna will have a small bandwidth, but modern radios can easily tune the antenna so that it operates on whatever channel the radio is currently using, giving comparable performance to a large broadband antenna while taking up less space and even providing new capabilities.”

The engineers developed a tunable metamaterial that allows them to tune a miniaturized antenna with narrow instantaneous bandwidths across an entire communications band depending on the channel in use, said Douglas H. Werner, John L. and Genevieve H. McCain Chair Professor of Electrical Engineering.

“Tuning the metamaterial and antenna in tandem provides a dynamic operating channel, with a tunable, nearly-arbitrary polarization response as an added benefit,” said Werner. “By employing our functionalized metamaterial concepts, we have been able to devise a way to dynamically tune the frequency response and polarization for the antenna, while, at the same time, providing a pathway to scaling the designs to low frequencies.”

Many research groups are working on different kinds of metamaterial-enabled antennas, but the one area that has been quite challenging is figuring out a way to scale these metamaterial and associated antenna structures down to operate at lower frequencies while maintaining a practical physical size and weight for the resulting integrated device—in general, the lower the frequency, the bigger the antenna, said Werner.

Related Articles Read More >

RemCom Wireless InSite 4.0
Software simulates RF conditions from the Earth to the Moon
FAQ on the Butler matrix for beamforming: part 2
10 GHz RF cables feature double shields
Test wireless signal to 110 GHz with this 1-mm cable

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World