5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Micro-Spectrometer Opens Door To A Wealth Of New Smartphone Functions

By Eindhoven University of Technology | December 20, 2017

Use your smartphone to check how clean the air is, whether food is fresh or a lump is malignant. This has all come a step closer thanks to a new spectrometer that is so small it can be incorporated easily and cheaply in a mobile phone. The little sensor developed at TU Eindhoven is just as precise as the normal tabletop models used in scientific labs. The researchers present their invention on 20 December in the journal Nature Communications.

Spectrometry, the analysis of visible and invisible light, has an enormous range of applications. Every material and every tissue has its own ‘footprint’ in terms of light absorption and reflection, and can thus be recognized by spectrometry. But precise spectrometers are large since they split up the light into different colors (frequencies), which are then measured separately. Just after the light is split, the beams, which have different frequencies, still overlap each other; highly precise measurements can therefore only be made some tens of centimeters after the splitting.

The Eindhoven researchers developed an ingenious sensor that is able to make such precise measurements in an entirely different way using a special ‘photonic crystal cavity’, a ‘trap’ of just a few micrometers into which the light falls and cannot escape. This trap is contained in a membrane, into which the captured light generates a tiny electrical current, and that is measured. Ph.D. student Žarko Zobenica made the cavity so that it is very precise, retaining just a very tiny frequency interval and therefore measuring only light at that frequency.

To be able to measure a larger frequency range, the researchers placed two of their membranes very closely one above the other. The two membranes influence each other: if the distance between them changes slightly, then the light frequency that the sensor is able to detect shifts too. For this purpose the researchers, supervised by professor Andrea Fiore and associate professor Rob van der Heijden, incorporated a MEMS (a micro-electromechanical system). This electromechanical mechanism allows the distance between the membranes to be varied, and thereby the measured frequency. Ultimately, then, the sensor covers a wavelength range of around thirty nanometers, within which the spectrometer can discern some hundred thousand frequencies, which is exceptionally precise. This is made possible by the fact that the researchers are able to precisely determine the distance between the membranes to just a few tens femtometers (10-15 meters).

To demonstrate the usefulness, the research team demonstrated several applications, including a gas sensor. They also made an extremely precise motion sensor by making clever use of the fact that the detected frequency changes whenever the two membranes move in relation to each other.

Professor Fiore expects it will take another five years or more before the new spectrometer actually gets into a smartphone because the frequency range covered is currently still too small. At the moment, the sensor covers just a few percent of the most common spectrum, the near-infrared. So his group will be working on extending the detectable spectrum. They will also be integrating an extra element with the micro-spectrometer: a light source, which will make the sensor independent of external sources.

Given the enormous breadth of applications, micro-spectrometers are expected to eventually become just as important an element of the smartphone as the camera. For example, to measure CO2, detect smoke, determine what medicine you have, measure the freshness of food, the level of your blood sugar, and so on.

Related Articles Read More >

RemCom Wireless InSite 4.0
Software simulates RF conditions from the Earth to the Moon
FAQ on the Butler matrix for beamforming: part 2
10 GHz RF cables feature double shields
Test wireless signal to 110 GHz with this 1-mm cable

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World