5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Networks of the Sea Enter Next Stage

By DARPA | January 9, 2017

DARPA’s Tactical Undersea Network Architecture (TUNA) program recently completed its initial phase, successfully developing concepts and technologies aimed at restoring connectivity for U.S. forces when traditional tactical networks are knocked offline or otherwise unavailable. The program now enters the next phase, which calls for the demonstration of a prototype of the system at sea.

TUNA seeks to develop and demonstrate novel, optical-fiber-based technology options and designs to temporarily restore radio frequency (RF) tactical data networks in a contested environment via an undersea optical fiber backbone. The concept involves deploying RF network node buoys—dropped from aircraft or ships, for example—that would be connected via thin underwater fiber-optic cables. The very-small-diameter fiber-optic cables being developed are designed to last 30 days in the rough ocean environment—long enough to provide essential connectivity until primary methods of communications are restored.

“Phase 1 of the program included successful modeling, simulation, and at-sea tests of unique fiber-cable and buoy-component technologies needed to make such an undersea architecture work,” said John Kamp, program manager in DARPA’s Strategic Technology Office. “Teams were able to design strong, hair-thin, buoyant fiber-optic cables able to withstand the pressure, saltwater, and currents of the ocean, as well as develop novel power generation concepts.”

Supplying power to floating buoy nodes on the open sea presents a particular challenge. During the first phase of the program, the University of Washington’s Applied Physics Lab (APL) developed a unique concept called the Wave Energy Buoy that Self-deploys (WEBS), which generates electricity from wave movement. The WEBS system is designed to fit into a cylinder that could be deployed from a ship or aircraft.

Having now entered its second and final phase, the program is advancing to design and implement an integrated end-to-end system, and to test and evaluate this system in laboratory and at-sea demonstrations. As a test case for the TUNA concept, teams are using Link 16—a common tactical data network used by U.S. and allied forces’ aircraft, ships, and ground vehicles.

Related Articles Read More >

RemCom Wireless InSite 4.0
Software simulates RF conditions from the Earth to the Moon
FAQ on the Butler matrix for beamforming: part 2
10 GHz RF cables feature double shields
Test wireless signal to 110 GHz with this 1-mm cable

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World