5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

New Study Demonstrates Radio Signal Benefits from Decades-Old Theory

By North Carolina State University | April 4, 2019

Engineering researchers have demonstrated that a longstanding theoretical method called direct antenna modulation (DAM) has real-world utility for boosting the quality of radio signals when transmitting at high data rates. The finding has applications in fields such as military communications.

“You can always improve signal quality by using a larger antenna, but that’s simply not practical for many wavelengths,” says Jacob Adams, an assistant professor of electrical engineering at NC State University and senior author of a paper on the work. “For example, antennas operating in the high frequency range – 3 to 30 megahertz (MHz) – would be 5 meters long or longer. We’ve shown that DAM can improve signal quality dramatically when using much smaller antennas. How much smaller can vary, but we’ve demonstrated the concept using antennas one-third the size of a conventional antenna for a given wavelength.”

The DAM concept has been around for more than 50 years, and is essentially the idea that storing and releasing energy from the antenna at the right moments can reduce the amount of distortion in the resulting signal. However, researchers had not previously done a thorough comparison of conventional antennas to DAM antennas when transmitting at high frequencies.

Adams and his team used antennas that were just under 1 meter long to transmit at 27 MHz, and found stark differences in performance between the DAM transmitter and a conventional one.

“We focused on frequencies that are practical for communications technologies that operate beyond the line of sight but that are also typically limited by large antennas,” Adams says. “And we found the DAM signal was still viable at data transmission rates where transmissions from the conventional antenna were simply indecipherable.

“We think this demonstrates the viability of DAM for use in practical technologies,” Adams says. “We are currently working on ways to further improve the power handling of DAM devices and to offer more flexibility in terms of the types of modulations that can be generated with DAM.”

The paper, “Pulse Characteristics of a Direct Antenna Modulation Transmitter,” is published in the open-access journal IEEE Access. First author of the paper is Kurt Schab, a former postdoctoral researcher at NC State who is now at Santa Clara University. The paper was co-authored by Danyang Huang, a Ph.D. student at NC State.


Filed Under: RF

 

Next Article

← Previous Article
Next Article →

Related Articles Read More >

Open RAN test service adds colocation capabilities
Switch operates DC to 20 GHz with 128 configurable connection states for asymmetric SerDes testing
Butler Matrix
Butler Matrix drives Wi-Fi and other phased-array antennas
Long-wire dipole antennas: still viable after more than a century

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World