5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Researchers Pioneer New Calibration Strategies for Detecting ‘Habitable’ Planets

By dmiyares | May 19, 2016

EU researchers have pioneered new calibration strategies for detecting “habitable” planets outside our solar system – with impressive results already.

The existence of extra-terrestrial life presupposes the existence of habitable planets – like Earth – outside our solar system. What makes our own planet so special is the fact that it has a solid outer crust and is situated at a distance from the sun where liquid water can exist. Only a few other planets have ever been discovered which satisfy these ‘habitability’ criteria.

Through pioneering new calibration strategies for detecting the tiniest variations in light waves from stars, the EU WAVELENGTH STANDARDS project aims to help astronomers find new ‘habitable’ planets, and perhaps one day help us answer the question of whether we are truly alone in the universe.

Star performance

The five year project, due for completion at the end of 2016, has already recorded several achievements. ‘We have participated in several international, long-term projects with the instruments we have helped to develop and build,’ explains project coordinator Professor Ansgar Reiners from the Georg-August-Universität Göttingen, Germany.

‘These projects have involved the search for extrasolar planets and life elsewhere in the universe. Some discoveries have proved important for our understanding of planet formation, such as the planet we found orbiting Kapteyn’s star.’

WAVELENGTH STANDARDS has also made a significant contribution to the CARMENES project, which built two spectrographs (instruments to measure wavelengths) with sensitivity extending into the infrared in order to search for Earth-like planets around low-mass stars. Reiners’ team was responsible for calibration, data reduction and analysis.

‘Another success has been our responsibility for calibration in the CRIRES+ project at ESO (European Southern Observatory)’s Very Large Telescope. Our group is also going to be in charge of the calibration unit for the design of the planned high resolution spectrograph for ESO’s flagship project, the 39m E-ELT (European Extremely Large Telescope).’

Funding from the EU’s European Research Council (ERC) also enabled Reiners to carry out high precision experiments with local telescopes and couple them with state-of-the art frequency calibration methods (called laser frequency combs). ‘We were able to install all necessary equipment required for highest precision measurements in-house,’ adds Reiners.

On the right wavelength

In order to detect ‘habitable’ planets outside our solar system, extremely sensitive equipment is required. Minute, periodic changes in starlight must be identified, which indicate that the star is being orbited by a planet.

Such investigations require ultra-precise light sources that can be used as reference points to allow the measurement of light wavelengths. For “cold” stars however – the type of stars that are closest to us – the calibrations required have until now simply not been available.

‘A small, Earth-like planet is detectable as a change in wavelength observed from a star; in other words, the star very slightly changes colour,’ explains Reiners. ‘This is why we need new wavelength standards that tell us at what particular wavelengths we are receiving from the starlight at any given time, and this is where our project promises to make a difference. Our group is now one of the few worldwide that can provide calibration strategies and facilities for the next generation of radial velocity spectrometers.’


Filed Under: RF

 

Next Article

← Previous Article
Next Article →

Related Articles Read More >

Long-wire dipole antennas: still viable after more than a century
RemCom Wireless InSite 4.0
Software simulates RF conditions from the Earth to the Moon
FAQ on the Butler matrix for beamforming: part 2
10 GHz RF cables feature double shields

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World