5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Scientists Work on an Alternative to Carry Data

By Technische Universität Darmstadt | August 15, 2016

Installing new optical fibres is expensive. So network operators want to make better use of their existing capacities. A new type of laser diode from Darmstadt could help. It has now been put into practice with the industry.

Light floods through the extensive office windows on the sixth floor of the Hans Busch Institute at the Technische Universität Darmstadt. Franko Küppers is at his desk, holding a gleaming grey fibre as fine as a hair up to the sun. Light flows through these fibres as well, although not for lighting, but to carry data.

Light as a communication medium has occupied the thoughts of this electrical engineering professor for a long time. He knows the unrivalled strength of optical fibres: thousands of gigabytes shoot through them every second. On the other hand, the copper cables which nowadays often still span the so-called “last mile” to the households, only transmit data at a thousandth of this rate.

As the former head of a respective research department at Deutsche Telekom, Küppers knows well what is hindering the spread of optical fibres. New infrastructure costs a lot of money. So network operators try to make better use of their existing capacities. A well-known way of doing this is so-called multiplexing, which combines up to 80 signals and simultaneously directs them though a single optical fibre. Think of it as a sort of inverted prism. This normally splits a beam of white light into its component colours. It also works in reverse: if beams of different colours enter the prism, it combines them to make a beam of white. As different signals can be carried by means of different coloured light, it is possible to combine more information in a white beam than it would be in a beam of a component colour.

“Multiplexing was the key innovation, as without it, neither the broadband internet we know today nor the mobile internet would be possible”, enthuses Küppers. His team from the Department of Electrical Engineering and Information Technology has crucially improved this technology, thus opening up a “vast market”, as the researcher puts it. A joint Turbo for the broadband network project involving the team from Darmstadt and three industrial companies and sponsored by the Federal Ministry of Education and Research (BMBF), recently got the technology ready for field tests.

The key part came from Darmstadt: A microelectro-mechanical system (MEMS), integrated with a laser diode, to which it gives a new and unusual feature. Laser diodes usually emit light of a specific wavelength. They inject light pulses of this colour into the optical fibres. In optical multiplexing, you need up to 80 different laser diodes of different colours. This is because each information channel transmits with a different light wavelength. “This causes a lot of expense”, says Küppers.

Because for one thing, it requires extremely precise manufacturing to ensure that the diode emits exactly the required wavelength. “There are a lot of rejects”, acknowledges Küppers. There must also be spare diodes available for all 80 channels.

Like a stringed instrument

Küppers is now offering an alternative – a laser diode that can be tuned in wavelength. The wavelength emitted by the diode can be chosen anywhere within a certain range. The advance can be compared to a stringed instrument. Previously, so to speak, guitars never used to have frets, so every string could only produce a single sound. The Darmstadt invention provides the frets, and thus the opportunity to elicit many sounds from every string.

Rejects are reduced. The wavelength can be changed on the finished product, so the standard that has to be maintained during production is not ridiculously strict. “It is also no longer necessary to keep 80 different spare parts available”, adds Küppers. A further advantage of the new diodes: “Networks can be more flexible”, says Küppers. Even during operation, it is possible to change the wavelength in a matter of seconds. The bandwidth of each colour channel can be constantly adapted to meet current needs. “So optimum use is made of the total bandwidth of the optical fibre”, stresses Küppers.

The basic idea behind the Darmstadt technique is simple. Imagine that a laser is like a tube with a mirror at each end, between which light is reflected to and fro. The distance between the two mirrors, rather like the length of a string, determines the colour of the light emitted by the laser. Julijan Cesar and Sujoy Paul, who are studying for their doctorates at Küppers’ Institute, show how it works in the cleanroom laboratory: Put a movable mirror at one end of a conventional laser diode. This consists of a highly reflective membrane of silicon oxide and silicon nitride, about a tenth of a millimetre in diameter. Four supports resembling spider’s legs hold it parallel above the surface of the actual diode. “If you direct a low current through these little legs, they expand and the mirror moves a bit further away from the surface of the diode”, explains Küppers. This change in the distance shifts the default wavelength used in optical fibres of 1,550 nanometres (millionth of a millimetre) by up to 100 nanometres. The technical jargon calls this technique: Vertical-Cavity Surface-Emitting Lasers, or VCSEL for short.

A laboratory prototype has now been developed by the Darmstadt team, together with an industrial consortium. “We enjoyed a very close collaboration”,enthused Küppers. And it was worth it. The new technology now achieves an extremely fast data rate of around 12 gigabits per second. “We also found it a particular challenge to keep the wavelength adjustment stable for operation”, explains Küppers. The joint project has developed a prototype that is suitable for mass production, and it is to be tested in the industrial environment of one of the partners.

The consortium will then be able to open up a vast market. The backbone of the internet consists of optical fibres. “But optical fibres are also used for data transmission in computing and data centres, which are becoming increasingly important in this age of cloud computing”, realises Küppers. It may well be that an invention from Darmstadt will soon become part of the basic internet configuration.


Filed Under: RF

 

Next Article

← Previous Article
Next Article →

Related Articles Read More >

Open RAN test service adds colocation capabilities
Switch operates DC to 20 GHz with 128 configurable connection states for asymmetric SerDes testing
Butler Matrix
Butler Matrix drives Wi-Fi and other phased-array antennas
Long-wire dipole antennas: still viable after more than a century

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World