5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Training Data for Autonomous Driving

By Karlsruhe Institute of Technology | April 23, 2019

Autonomous cars must perceive their environment true to reality. The corresponding algorithms are trained using a large number of image and video recordings. For the algorithm to recognize single image elements, such as a tree, a pedestrian or a road sign, these are labeled. Labeling is improved and accelerated by understand.ai, a startup established by computer scientist Philip Kessler, who studied at Karlsruhe Institute of Technology (KIT), and his co-founder Marc Mengler.

“An algorithm learns by examples and the more examples exist, the better it learns,” Philip Kessler says. For this reason, automotive industry needs a large amount of video and image material in machine learningfor autonomous driving. So far, objects on the images have been labeled manually by human staff. “Big companies, such as Tesla, employ thousands of workers in Nigeria or India for this purpose. The process is troublesome and time-consuming,” Kessler explains. “We at understand.ai use artificial intelligence to make labeling up to ten times quicker and more precise,” he adds. Although image processing is highly automated in large parts, final quality control is made by humans. Combination of technology and human care is particularly important for safety-critical activities, such as autonomous driving,” the founder of understand.ai says. The labelings, also called annotations, in the image and video files have to agree with the real environment with pixel accuracy. The better the quality of the processed image data, the better is the algorithm that uses these data for training.

“As training images cannot be supplied for all situations, such as accidents, we now also offer simulations based on real data,” Kessler says. Although the startup focuses on autonomous driving, it also plans to process image data for training algorithms to detect tumors or to evaluate aerial photos in the future. Leading car manufacturers and suppliers in Germany and the USA are among the clients of the startup established by Kessler and Marc Mengler in 2017. The company’s main office is located in Karlsruhe. Some of the more than 50 employees are working at offices in Berlin and San Francisco. In 2018, the startup was granted startup funding in the amount of USD 2.8 million by a group of private investors.

In 2012, Kessler, born in Braunschweig, started to study informatics at KIT, where he became interested in artificial intelligence and autonomous driving when developing an autonomous model car in the KITCar students group. He considered work in the PionierGarage university group for student entrepreneurs and his one-year stay with Mercedes Research in Silicon Valley, where he focused on machine learning and data analysis, “highly motivating” for establishing his own business.

“Nowhere else can you learn more within a shortest period of time than in a startup. Recently, the interest of big companies in cooperating with startups increased considerably,” the 26-year-old founder says. He thinks that Germany sleepwalked through the first wave of artificial intelligence, in which it was used mainly in entertainment devices and consumer products. “In the second wave, in which artificial intelligence is applied in industry and technology, Germany will be able to use its potential,” Kessler says.


Filed Under: Wireless Design and Development

 

Next Article

← Previous Article
Next Article →

Related Articles Read More >

Second-generation tech extends range by 50 percent
Sequans announces production of latest LTE module
Transceiver supports 2.4 GHz ISM and SATCOM
Vehicles get Wi-Fi 7 with ublox module

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World