5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Transimpedance amp could enable 100 Gb/sec PON

By Martin Rowe | September 27, 2022

The upstream linear burst-mode transimpedance amplifier is the first to support 50 Gb/sec NRZ and 100 Gb/sec PAM4. They could drastically increase internet connection speeds and 5G infrastructure.

Researchers from IDLab — an imec research group at Ghent University and the University of Antwerp, Belgium — and Nokia Bell Labs have developed the first upstream linear burst-mode transimpedance amplifier (TIA) chip that accommodates 50 Gbit/s NRZ and 100 Gbit/s PAM-4 modulation. The chip lets optical line terminals (OLTs) cope with upstream packets’ varying signal strength and quality degradation, effects compounded by the speeds of next-generation passive optical networks (PONs). The TIA chip could make next-gen flexible 100G PON deployments technically and economically viable, according to a press release.

PON technology brings high-speed broadband to residential and business subscribers, while supporting services such as 5G fronthaul and backhaul.

NRZ PAM4

NRZ signals send one bit per symbol as where PAM signals send two bits per symbol.

PON networks operate through a tree-like network topology that serves multiple customers with a common fiber strand connected to a single OLT in an operator’s central office. This improves cost-effectiveness and impacts how packets travel the network. For example, downstream traffic is sent over the network continuously, while upstream traffic is transmitted in bursts or allocated time slots, thus preventing collisions.

Sales for 10G PON are skyrocketing and the 25G PON products are now in production. Upstream direction, make more important as people upload videos, brings challenges building 50G and 100G PONs.

Upstream packets arriving at an OLT’s receiver may present a wide optical power dynamic range to the receiver caused by the differential path loss of the optical distribution network and variations in a transmitter’s launch power. Furthermore, the distance between an OLT and its ONTs — from a few hundred meters to a few tens of kilometers — plays a role.

“As those effects are compounded even further by the high speeds at which next-gen PONs operate, it will be crucial to make sure that all packets arriving at the OLT end up having roughly the same signal strength. Moreover, this must be done with minimal overhead — i.e. no more than a few tens of nanoseconds,” said Gertjan Coudyzer, senior researcher in analog/mixed signal IC design at IDLab, an imec research group at Ghent University and the University of Antwerp. “Our novel chip does exactly that, allowing us to use each packet – and the network as a whole — to the fullest, maximizing its speed, reach and throughput.”

“During our experiments,” continued Coudyzer, “we have been able to validate the chip’s linear burst-mode operation; a linearity not only enabling signal equalization, but also paving the way for PAM-4 as a future PON modulation format — doubling the bitrate compared to the use of NRZ. This world’s first is a breakthrough to facilitate the future roll-out of large-scale 100G PONs.”

The TIA chip is fabricated in a 0.13 μm SiGe process. It consumes 275 mW (on average) from a 2.5 V supply. Its total settling time is well under 150 ns, which meets the typical PON target preamble time.


Filed Under: 5G, amplifiers, Featured, Optical

 

Next Article

← Previous Article
Next Article →

Related Articles Read More >

OFC 2025: AI, power, and 1.6T
OFC 2025: Interoperability demos
What are the fiber options for 5G fronthaul?
Silicon photonics
Co-packaged optics: higher data rates increase reliability risks

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World