5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Why Analog Delay Lines Are the Best Choice over Digital

By dmiyares | November 4, 2015

Simply put, delay lines are used to introduce a calculated delay into an RF signal transmission. These delays are necessary for certain systems to function properly, as these signals can often be transmitted much more quickly than systems can handle. For example, the military uses Surface Acoustic Wave (SAW) delay lines for radar calibration and jamming. The delay lines allow the radar system to effectively process and synchronize signals that are traveling at the speed of light. Without the delays, the radar wouldn’t be able to interpret all of the signals it is receiving.

The length of delay, substrate used, and the type of delay line material are all factors that come into play when choosing a delay line solution. Analog Bulk Acoustic Wave (BAW) delay lines are often used for target generation, radar calibration, and EW (Electronic Warfare). The BAW delay lines that calibrate radar and display systems are made out of quartz or glass that can be heated for increased stability, which is often a necessity when dealing with high reliability applications.

While digital delay lines have grown in popularity, analog delay lines of all types are typically much more reliable and offer many other advantages over their digital counterparts. Cost, size, and weight can all be significantly lower with analog delay lines, while still offering higher MTBF (Mean Time Before Failure) rates and reliability. Here’s a side-by-side comparison showing how the two types of delay lines stack up, and why analog always comes out on top.


Filed Under: RF

 

Next Article

← Previous Article
Next Article →

Related Articles Read More >

Butler Matrix
Butler Matrix drives Wi-Fi and other phased-array antennas
Long-wire dipole antennas: still viable after more than a century
RemCom Wireless InSite 4.0
Software simulates RF conditions from the Earth to the Moon
FAQ on the Butler matrix for beamforming: part 2

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World