5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

A Printable, Flexible, Lightweight Temperature Sensor

By Phys.org | November 10, 2015

A University of Tokyo research group has developed a flexible, lightweight sensor that responds rapidly to tiny thermal changes in the range of human body temperature. This sensor is expected to find healthcare and welfare applications in devices for monitoring body temperature, for example of newborn infants or of patients in intensive care settings.

Flexible and wearable devices are increasingly being developed for healthcare and other applications where temperature and other sensors are integrated to provide feedback on patient health and wellbeing. Body temperature is a fundamental measurement and many low-cost flexible temperature sensors have been demonstrated, but devices developed to date require external circuitry to amplify the signal to allow accurate temperature measurement.

In their latest research, Professor Takao Someya and Dr. Tomoyuki Yokota’s research group at the Graduate School of Engineering have developed a new printable, flexible, lightweight temperature sensor that shows a very high change in electrical resistance of up to 100,000 times over a range of just five degrees centigrade, allowing accurate temperature measurement without additional complicated display circuitry.

The key to the new sensor is the ability to precisely control the target temperature of the sensors. The sensor is composed of graphite and a semicrystalline acrylate polymer formed of two monomers, molecules that bond together to form a polymer chain. The target temperature range at which the sensor is most precise can be selected simply by altering the proportions of the two monomers. The research group achieved target temperatures between 25 and 50 degrees centigrade, a range which includes average human body temperature, and simultaneously realizing response times of less than 100 milliseconds and a temperature sensitivity of 0.02 degrees centigrade. The device was also stable even under physiological conditions, providing repeated readings up to 1,800 times.

The research group tested their new sensor by printing a flexible thermal monitoring device which was placed directly on the lung of a rat to measure lung temperature. The device successfully measured cyclic changes in lung temperature of just 0.1 degrees centigrade as the animal breathed, demonstrating its utility as a sensor for monitoring body vital signs in physiological (internal) settings.

“By printing an array of these sensors it is possible to measure surface temperature over a large area,” says Professor Someya. He continues, “This sensor array can be attached to biological tissue such as the skin for precise monitoring in medical applications. Because the huge response of the sensor to temperature change allows us to simplify the circuitry, we could print our sensors onto adhesive plasters that could then monitor body temperature. For example, a plaster applied directly to a wound or after surgery could provide warning of infection by detecting local changes in temperature due to inflammation.”

Other possible applications include wearable electronic apparel, where the sensor could be applied beneath fabric to measure temperature during sporting and other activities.

Related Articles Read More >

RemCom Wireless InSite 4.0
Software simulates RF conditions from the Earth to the Moon
FAQ on the Butler matrix for beamforming: part 2
10 GHz RF cables feature double shields
Test wireless signal to 110 GHz with this 1-mm cable

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: Internet of Things
Explore practical strategies for minimizing attack surfaces, managing memory efficiently, and securing firmware. Download now to ensure your IoT implementations remain secure, efficient, and future-ready.

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World