5G Technology World

  • 5G Technology and Engineering
  • FAQs
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • Wireless Design
  • Learn
    • 5G Videos
    • Ebooks
    • EE Training Days
    • FAQs
    • Learning Center
    • Tech Toolboxes
    • Webinars/Digital Events
  • Handbooks
    • 2024
    • 2023
    • 2022
    • 2021
  • Resources
    • Design Guide Library
    • EE World Digital Issues
    • Engineering Diversity & Inclusion
    • Engineering Training Days
    • LEAP Awards
  • Advertise
  • Subscribe

Efficient, Organic Photovoltaic Cells for Indoor and Outdoor Applications

By Phys.org | January 25, 2017

Organic photovoltaics (OPV) may cost less than their silicon counterparts, but their performance remains off-putting to this day. A consortium of European research groups and industries recently demonstrated free-form organic solar modules for three specific, indoor and outdoor applications that should help put such concerns to bed.

Over its three years of intensive research, the ARTESUN consortium had a single objective: the development of high performance materials enabling cost-effective, non-vacuum production of OPV modules boasting an efficiency of over 15%. These modules had to allow for arbitrary size and shape to make their use possible across a large panel of applications.

In a press release published in late December 2016, project partners announced that they successfully realised several types of organic solar modules using newly-developed roll-to-roll (R2R) additive non-vacuum coating and printing techniques.

Thanks to the combination of novel active layer and electrode materials with coating and module interconnection techniques, small and large area demonstrators of various shapes and size could be demonstrated, targeting three different sectors and applications.

Of one these three use cases consisted in the production of RFID tags where the battery pack is replaced by an organic solar module with a size comparable to that of a credit card. The module powers all wireless communications between the RFID tag itself and its reader, along with the integrated sensor device. Cars and buildings are two applications of choice for this novel device.

‘Auxiliary electronics including energy storage in form of a supercapacitor and overvoltage protection are integrated to the RFID tag to secure the operation up to one day during poor light conditions,’ the press release reads. ‘The tag can sense the indoor surrounding temperature, which is monitored wirelessly with a handheld reader. Outdoors, a vehicle can be identified wirelessly with a fixed reader from a reading distance increased by a factor of 10 when utilising solar power compared to passive mode operation.’

A second use case was presented in the form of a flower-inspired flexible organic solar antenna module. Built using gravure printing, the module is able to power a radio and an environmental sensor in a distributed wireless sensor network. It has been optimised to operate under low or varying light intensities which, according to the consortium, makes it suitable for remote, autonomous precise environmental monitoring in agricultural applications.

Finally, the team successfully developed large area modules and assembled them in a glass-based facade element for use in building integration. The BIPV (Building-integrated photovoltaics) element of 1610mm x 380mm can be integrated as a ventilated façade within well-defined structural elements. ‘Potential market acceptability, in terms of overall subjective properties (robustness, colour, design, reflection, etc.), was tested by means of a visual inspection experts’ panel providing scores from 0 to 10. The result shows an overall excellent acceptance rating between 7-8 for this BIPV product,’ the project team writes.

With these three products, the VTT-led consortium hopes to provide participating European SMEs with a competitive edge.


Filed Under: RF

 

Next Article

← Previous Article
Next Article →

Related Articles Read More >

Butler Matrix
Butler Matrix drives Wi-Fi and other phased-array antennas
Long-wire dipole antennas: still viable after more than a century
RemCom Wireless InSite 4.0
Software simulates RF conditions from the Earth to the Moon
FAQ on the Butler matrix for beamforming: part 2

Featured Contributions

  • Overcome Open RAN test and certification challenges
  • Wireless engineers need AI to build networks
  • Why AI chips need PCIe 7.0 IP interconnects
  • circuit board timing How timing and synchronization improve 5G spectrum efficiency
  • Wi-Fi 7 and 5G for FWA need testing
More Featured Contributions

EE TECH TOOLBOX

“ee
Tech Toolbox: 5G Technology
This Tech Toolbox covers the basics of 5G technology plus a story about how engineers designed and built a prototype DSL router mostly from old cellphone parts. Download this first 5G/wired/wireless communications Tech Toolbox to learn more!

EE LEARNING CENTER

EE Learning Center
“5g
EXPAND YOUR KNOWLEDGE AND STAY CONNECTED
Get the latest info on technologies, tools and strategies for EE professionals.

Engineering Training Days

engineering
“bills
5G Technology World
  • Enews Signup
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • EV Engineering
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • About Us
  • Contact Us
  • Advertise

Copyright © 2025 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy

Search 5G Technology World