5G Technology World

  • 5G Technology and Engineering
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • EE Learning Center
  • 5G Videos
  • Handbooks
    • 2022
    • 2021
  • Design Guides
    • WiFi & the IOT Design Guide
    • Microcontrollers Design Guide
    • State of the Art Inductors Design Guide

Transphorm and Fujitsu Semiconductor Announce Mass Production of GaN Power Devices

By WDD Staff | January 29, 2015

Production at CMOS-compatible fab enables GaN to meet the increasing demand of the market.

Goleta, CA – Transphorm, Transphorm Japan, and Fujitsu Semiconductor Limited have announced that Fujitsu Semiconductor group’s CMOS-compatible, 150 mm wafer fab in Aizu-Wakamatsu, Fukushima, Japan, has started mass production of Gallium Nitride (GaN) power devices for switching applications.

The large-scale, automotive-qualified facility, which is providing exclusive GaN foundry services for Transphorm, will allow dramatic expansion of Transphorm’s GaN power device business. This stepped up production can satisfy the increasing market demands for GaN devices, thereby enabling the next wave of compact, energy-efficient power conversion systems.

Transphorm has established the industry’s first and only qualified 600 V GaN device platform, backed by its world-leading GaN power IP portfolio. The world’s first photovoltaic power conditioner products using the GaN module from Transphorm was launched in January, 2015. Other applications include ultra-small AC adapters, high-density power supplies for PCs, servers and telecom equipment, highly efficient motion control systems, and more.

In 2013, Fujitsu Semiconductor and Transphorm announced the business integration of their GaN power device solutions. Since then, Transphorm’s JEDEC-qualified process has been combined with Fujitsu Semiconductor’s basic technology and ported to the CMOS-compatible, 150 mm fab of Aizu Fujitsu Semiconductor Wafer Solution Limited, with key improvements for high-volume, silicon-compatible device manufacturing.

Understanding that a highly reliable manufacturing production line is one of the essential requirements of any business expansion, the companies have successfully finished the development in Aizu-Wakamatsu and have now started mass production.

“The start of the mass production in a CMOS-compatible fab is a significant step forward toward achieving the widespread use of GaN power devices, as well as a demonstration of the successful integration of both companies’ strengths,” says Haruki Okada, President of Fujitsu Semiconductor. “We will continue to enhance our high-quality manufacturing technology to support the stable supply of the products and bring the new value of GaN power devices to the world.”

“Manufacturing Transphorm’s GaN power devices at the Fujitsu Aizu-Wakamatsu facility will assure our customers a scalable, stable supply of products with the stamp of Fujitsu’s proven, high-quality standard in mass manufacturing,” says Fumihide Esaka, CEO of Transphorm. “We will continue to expand our GaN power device portfolio with continued partnership with Fujitsu Semiconductor.”

For more information visit www.transphormusa.com and http://jp.fujitsu.com/fsl/en.

Related Articles Read More >

EE World’s T&M Handbook features 5G, 6G, RF power articles
Engineers propose new waveforms for 6G
1.35 mm RF connectors send DC-to-90-GHz signals
12 GHz: Claims and counterclaims take hold

Special Issue: 5G Handbook

Need 5G Technology World news in a minute?

We Deliver!
5G Technology World Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup

EE World Online Twitter

Tweets by @RandDWorld

EE TRAINING CENTER CLASSROOMS

EE Classrooms
5G Technology World
  • Enews Signup
  • Contact Us
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search 5G Technology World

  • 5G Technology and Engineering
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • EE Learning Center
  • 5G Videos
  • Handbooks
    • 2022
    • 2021
  • Design Guides
    • WiFi & the IOT Design Guide
    • Microcontrollers Design Guide
    • State of the Art Inductors Design Guide