5G Technology World

  • 5G Technology and Engineering
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • EE Learning Center
  • 5G Videos
  • Handbooks
    • 2022
    • 2021
  • Design Guides
    • WiFi & the IOT Design Guide
    • Microcontrollers Design Guide
    • State of the Art Inductors Design Guide

Arecibo Radar Returns With Asteroid Phaethon Images

By NASA | December 26, 2017

After several months of downtime after Hurricane Maria blew through, the Arecibo Observatory Planetary Radar has returned to normal operation, providing the highest-resolution images to date of near-Earth asteroid 3200 Phaethon during its Dec. 16 flyby of Earth. The radar images, which are subtle at the available resolution, reveal the asteroid is spheroidal in shape and has a large concavity at least several hundred meters in extent near the leading edge, and a conspicuous dark, circular feature near one of the poles. Arecibo’s radar images of Phaethon have resolutions as fine as about 250 feet (75 meters) per pixel.

“These new observations of Phaethon show it may be similar in shape to asteroid Bennu, the target of NASA’s OSIRIS-REx spacecraft, but 10 times larger,” said Patrick Taylor, a Universities Space Research Association (USRA), Columbia, Maryland, scientist and group leader for Planetary Radar at Arecibo Observatory. “The dark feature could be a crater or some other topographic depression that did not reflect the radar beam back at us.”

Radar images obtained by Arecibo indicate Phaethon has a diameter of about 3.6 miles (6 kilometers)—roughly 0.6 miles (1 kilometer) larger than previous estimates. Phaethon is the second largest near-Earth asteroid classified as “Potentially Hazardous.” Near-Earth objects are classified as potentially hazardous asteroids (PHAs), based on their size and how closely their orbits approach Earth.

“Arecibo is an important global asset, crucial for planetary defense work because of its unique capabilities,” said Joan Schmelz of USRA and deputy director of Arecibo Observatory. “We have been working diligently to get it back up and running since Hurricane Maria devastated Puerto Rico.”

The Arecibo Observatory has the most powerful astronomical radar system on Earth. On Sept. 20, the telescope suffered minor structural damage when Maria, the strongest hurricane to hit the island since 1928, made landfall. Some days after the storm, the telescope resumed radio astronomy observations, while radar observations, which require high power and diesel fuel for generators at the site, resumed operations in early December after commercial power returned to the observatory.

Asteroid Phaethon was discovered on Oct. 11, 1983, by NASA’s Infrared Astronomical Satellite (IRAS). Observations of Phaethon were conducted at Arecibo from Dec. 15 through 19, 2017, using the NASA-funded planetary radar system. At time of closest approach on Dec. 16 at 3 p.m. PST (3 p.m. EST, 11 p.m. UTC) the asteroid was about 1.1 million miles (1.8 million kilometers) away, or about 4.6 times the distance from Earth to the moon. The encounter is the closest the object will come to Earth until 2093.

Radar has been used to observe hundreds of asteroids. When these small, natural remnants of the formation of our solar system pass relatively close to Earth, deep space radar is a powerful technique for studying their sizes, shapes, rotation, surface features and roughness, and for more precise determination of their orbital path.

The Arecibo Planetary Radar Program is fully funded by NASA through a grant to Universities Space Research Association (USRA), from the Near-Earth Object Observations program. The Arecibo Observatory is a facility of the National Science Foundation operated under cooperative agreement by SRI International, USRA, and Universidad Metropolitana.

NASA’s Planetary Defense Coordination Office is responsible for finding, tracking and characterizing potentially hazardous asteroids and comets coming near Earth, issuing warnings about possible impacts, and assisting coordination of U.S. government response planning, should there be an actual impact threat.

Related Articles Read More >

Engineers propose new waveforms for 6G
Nellie Bly
Cellular network connects autonomous sea vessel to land
Radar sensor integrates antenna and signal processing
Future connectivity: More than just 5G

Special Issue: 5G Handbook

Need 5G Technology World news in a minute?

We Deliver!
5G Technology World Enewsletters get you caught up on all the mission critical news you need. Sign up today.
Enews Signup

EE World Online Twitter

Tweets by @RandDWorld

EE TRAINING CENTER CLASSROOMS

EE Classrooms
5G Technology World
  • Enews Signup
  • Contact Us
  • EE World Online
  • DesignFast
  • EDABoard Forums
  • Electro-Tech-Online Forums
  • Microcontroller Tips
  • Analogic Tips
  • Connector Tips
  • Engineer’s Garage
  • Power Electronic Tips
  • Sensor Tips
  • Test and Measurement Tips
  • Wire & Cable Tips

Copyright © 2022 WTWH Media LLC. All Rights Reserved. The material on this site may not be reproduced, distributed, transmitted, cached or otherwise used, except with the prior written permission of WTWH Media
Privacy Policy | Advertising | About Us

Search 5G Technology World

  • 5G Technology and Engineering
  • Apps
  • Devices
  • IoT
  • RF
  • Radar
  • EE Learning Center
  • 5G Videos
  • Handbooks
    • 2022
    • 2021
  • Design Guides
    • WiFi & the IOT Design Guide
    • Microcontrollers Design Guide
    • State of the Art Inductors Design Guide